Mechanistic Role of Water on the Rate and Selectivity of Fischer– Tropsch Synthesis on Ruthenium Catalysts**

David D. Hibbitts, Brett T. Loveless, Matthew Neurock,* and Enrique Iglesia*

Ru and Co catalyze Fischer–Tropsch synthesis (FTS) with high rates and C_{5+} selectivities using stoichiometric synthesis gas and provide the preferred route to liquid fuels and petrochemicals.^[1-3] O-atoms in CO are predominantly removed as $H_2O_{2,3}^{[2,3]}$ a product that has been shown to increase,^[2,4,5] decrease,^[6] or not affect^[3,7] turnover rates on Co-based catalysts, but which in all cases increases C_{5+} and alkene selectivities on Co and Ru.^[2,4,5]

H₂O can inhibit rates by increasing O* coverages on Co;^[6] such coverages require higher H₂O/H₂ ratios on Ru catalysts, rendering Ru catalysts stable even in aqueous media during FTS.^[8] H₂O promotion of FTS rates may reflect faster CO transport within H₂O-rich intrapore liquids when CO diffusion limits rates,^[2] but H₂O effects are observed even under conditions of strict kinetic control. H2O-mediated rate enhancements may arise from higher densities of exposed metal atoms during FTS catalysis, possibly because chemisorbed carbon (C*) reacts with H₂O-derived species. Such a loss of binding sites, however, is inconsistent with CO* coverages (from infrared spectra) that do not depend on H₂O pressure at levels that increased FTS rates by ca. 30%.^[5] Stronger rate enhancements were reported for Co on largepore supports, which require higher H₂O pressures for intrapore condensation than small-pore supports, suggesting that a condensed H₂O phase, which may exist within smallpore supports at very low CO conversions, may be required.^[2,5,9] Here, Ru clusters on large-pore SiO_2 are used to measure rate and selectivity enhancements by H₂O, and

[*] Dr. M. Neurock Departments of Chemical Engineering and Chemistry University of Virginia, Charlottesille, Virginia, 22904 (USA) E-mail: neurock@virginia.edu Homepage: http://www.che.virginia.edu/people/faculty/neurock.html Dr. D. D. Hibbitts, Dr. B. T. Loveless, Dr. E. Iglesia Department of Chemical and Biomolecular Engineering University of California at Berkeley Berkeley, California, 94720 (USA) E-mail: iglesia@berkeley.edu Homepage: http://iglesia.cchem.berkeley.edu/ [**] We thank BP for financial support through the BP Conversion Consortium (BP-XC²) program as well as Drs. Glenn Sunley, Jay Labinger, Craig Plaisance, Corneliu Buda and the entire BP-XC² team for helpful discussions. We also wish to acknowledge the computational resources provided by the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by

mental Research at the Pacific Northwest National Laboratory. Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201304610.

the U.S. Department of Energy, Office of Biological and Environ-

density functional theory (DFT) calculations are used to examine the role of H_2O as a co-catalyst in O–H formation steps in kinetically-relevant CO activation steps.

 H_2O pressures were varied by changing residence time (and CO conversion) or adding H_2O to H_2 -CO reactants.^[5] CO consumption rates increased monotonically with increasing H_2O pressure (up to 0.3 MPa H_2O ; Figure 1), suggesting

Figure 1. CO consumption rate (\triangle or \blacktriangle), CH₄ selectivity (\square or \blacksquare), and C₅₊ selectivity (\bigcirc or \bullet) as a function of H₂O partial pressure on 5 wt% Ru/SiO₂ (463 K, 2.9 MPa, H₂/CO=4.5). Open symbols: space velocity changes; closed symbols: H₂O-addition.

that H_2O influences kinetically-relevant CO activation steps.^[10] The weaker effects above 0.3 MPa H_2O reflect coadsorption of H_2O -derived species with CO*, H*, and their products. H_2O decreased CH₄ selectivity and increased C₅₊ selectivity (Figure 1), suggesting that H_2O -derived species increase monomer concentrations and/or their propagation rate constants.

Equation (1) describes the effects of H_2 and CO pressure on FTS rates at low and nearly constant H_2O pressures on Co and Ru.^[2,3,5,7,10,11]

$$r_{\rm CO} = \frac{a(\rm CO)(\rm H_2)}{[1 + K_{\rm CO}(\rm CO)]^2}$$
(1)

where (CO) and (H_2) are pressures. This equation indicates that kinetically-relevant transition states (TS) are bound at two vicinal Ru atoms and contain one CO and two H atoms. Direct CO* dissociation is irreversible and exhibits very high

activation barriers, and the resulting rate equation is inconsistent with measured FTS rates, rendering such alternate routes implausible, as previously shown.^[10]

Scheme 1 depicts three H-assisted CO activation routes consistent with Equation (1) and their respective lumped rate

1)
$$CO(g) + * \bigoplus CO^*$$

2) $H_2(g) + 2^* \bigoplus 2H^*$
formyl route
3a) $CO^* + H^* \bigoplus HCO^* + *$
4a) $HCO^* + H^* \longrightarrow *HCOH^*$
5a) $*HCOH^* \longrightarrow CH^* + OH^*$
hydroxymethylidyne route
3b) $CO^* + H^* \bigoplus COH^* + *$
4b) $COH^* + H^* \longrightarrow *HCOH^*$
5b) $*HCOH^* \longrightarrow CH^* + OH^*$
carbon adatom route
3c) $CO^* + H^* \bigoplus COH^* + *$
 $a = K_{CO}K_{H_2}K_{3b}k_{4b}$
 $K_{3b}K_{4b}$
 $K_{4b}K_{3b}K_{4b}$
 $K_{4b}K_{4b}K_{4b}$
 $K_{4b}K_{4b}K_{4b}K_{4b}$
 $K_{4b}K_{4b}K_{4b}K_{4b}K_{4b}K_{4b}$
 $K_{4b}K$

constants (α). DFT-derived energies on CO*-covered Ru₂₀₁ clusters show that CO* and H* react to form HCO* in quasi-equilibrated steps (Step 3a), which then reacts irreversibly with H* to form *HCOH* (step 4a) (formyl route, Scheme 1),^[10] as also found on Co and Fe surfaces.^[3,11,12] Another route adds H* at the O-atom in CO* to form COH* (step 3b) in a quasi-equilibrated step that is followed by irreversible H* addition at the C-atom to form *HCOH* (step 4b) (hydroxymethylidyne route, Scheme 1).

The coverage dependence of CO* binding energies shows that Ru_{201} clusters become saturated at 1.5 CO* per exposed Ru atom with

and effective barriers reflect energy differences between kinetically-relevant transition states (TS) and reactant states:

$$\Delta H_{\rm eff} = -Q_{\rm CO} + Q_{\rm H_2} + \Delta H_{\rm Rxn,3} + \Delta H_{\rm Act,4} \tag{3}$$

Here, steps 3 and 4 refer to those in Scheme 1 for each Hassisted CO activation sequence. In terms of the energies of the species involved, Equation (3) becomes [derivation in Supporting Information (SI), Eqs. (S3)–(S5)]:

$$\Delta H_{\rm eff} = H_{\rm TS_i^{**}} - \left(H_{\rm CO^*} - H_{\rm CO(g)}\right) - H_{\rm CO^*} - \frac{n}{2}H_{\rm H_2(g)} \tag{4}$$

where n is the number of H-atoms in the TS of step i.

Figure 2 shows DFT-derived reaction and activation energies for the formyl and hydroxymethylidyne routes. The HCO* formation barrier is 93 kJ mol⁻¹, while its reverse barrier (30 kJ mol⁻¹) is much smaller than for its reaction with H* to form *HCOH* (95 kJ mol⁻¹), indicating that HCO* formation is quasi-equilibrated. HCO* dissociation to form CH* and O* has a barrier of 155 kJ mol⁻¹,^[10] which is much larger than H*-addition to HCO* to form *HCOH* (95 kJ mol⁻¹). *HCOH* decomposes to HCO* and H* with a much larger barrier (86 kJ mol⁻¹) than to CH* and OH*

Figure 2. Reaction coordinate diagrams for the two H*-assisted CO activation mechanisms in Scheme 1. Intrinsic activation barriers are in italics and effective barriers (with respect to CO*-covered Ru₂₀₁ particles; [Eq. (4)]) are in bold.

supra-stoichiometric CO* species residing at corners and edges, and all CO* remaining in atop positions.^[10] DFT-derived CO* binding energies (-42 kJ mol^{-1}) and CO* entropies from Volmer gas 2-D models at these coverages give an adsorption free energy ($\Delta G_{ads} = 7.8 \text{ kJ mol}^{-1}$) similar to measured values (2.2 kJ mol^{-1}).^[10] These coverages and Ru₂₀₁ (111) terraces are used in all energy calculations (see Experimental Section)^[10] and reflect the active sites involved in FTS.^[10,13]

At high CO* coverages, Equation (1) becomes:

$$r_{\rm CO} = \frac{K_{\rm H_2} K_3 k_4({\rm H_2})}{K_{\rm CO}({\rm CO})} \tag{2}$$

(43 kJ mol⁻¹), indicating that *HCOH* formation is irreversible. It forms CH* and OH* species that react in subsequent kinetically-irrelevant steps to form the hydrocarbon and H_2O products of FTS. The effective barrier for this formyl route is 193 kJ mol⁻¹ [Eq. (4)], which is much smaller than those for routes involving unassisted CO* dissociation (322 kJ mol⁻¹).^[10]

The barrier for H* addition to the O-atom in CO* (to form COH*; 152 kJ mol^{-1}) is larger than for the addition at the C-atom (93 kJ mol⁻¹). COH* undergoes subsequent H*-addition to form *HCOH*, which forms CH* and OH*, as in the formyl route. In this route, COH* formation has the largest effective barrier [186 kJ mol⁻¹, Figure 2, Eq. (4)] and

Ko

0-5.1

Кон

0-3.9

[MPa^{-0.5}]

 K_{H_2O}

[MPa⁻¹]

becomes the kinetically-relevant step, leading to the rate equation:

$$r_{\rm CO} = \frac{k_{3b} K_{\rm CO} K_{\rm H_2}^{0.5} (\rm CO) (\rm H_2)^{0.5}}{\left[1 + K_{\rm CO} (\rm CO)\right]^2}$$
(5)

inconsistent with the measured first-order H_2 dependence of FTS rates, as also found on Co surfaces.^[3]

 H_2O -mediated rate enhancements require changes in the dynamics or identity of kinetically-relevant steps. Any enthalpic stabilization of relevant transition states must overcome concomitant entropy losses from hindered mobility of any H_2O molecules involved. Measured effects of H_2O on FTS rates can be described by Equation (6), a modified version of Equation (1). This equation contains a numerator term that accounts for the promotion of FTS rates by H_2O and denominator terms for co-adsorption of H_2O -derived species formed in quasi-equilibrated steps $[H_2O^*, OH^*, O^*, Eqs. (7)–(9)].$

$$r_{\rm CO} = \frac{\alpha(\rm CO)(\rm H_2) + \beta(\rm CO)(\rm H_2)(\rm H_2O)}{\left[1 + K_{\rm CO}(\rm CO) + K_{\rm H_2O}(\rm H_2O) + K_{\rm OH}(\rm H_2O)(\rm H_2)^{-0.5} + K_{\rm O}(\rm H_2O)(\rm H_2)^{-1}\right]^2} \quad (6)$$

 $H_2O + * \xrightarrow{K_{H_2O}} H_2O^*$ (7)

 $H_2O + * \xrightarrow{K_{OH}} OH^* + \frac{1}{2}H_2$ (8)

$$\mathbf{H}_{2}\mathbf{O} + \ast \xrightarrow{K_{0}} \mathbf{O}^{\ast} + \mathbf{H}_{2} \tag{9}$$

The parity plot in Figure 3 shows that Equation (6) accurately describes all rate data in Figure 1, as well as previously reported data.^[10] The relative contributions from O^* , OH^* and H_2O^* coverages cannot be inferred from these data as determined by a sensitivity analysis (Table S2, Figure S10, SI), but DFT-derived free energies (Figure S12, SI)

K_{co}

 $[MPa^{-1}]$

 5.6 ± 0.6

 6.2 ± 0.7 0-3.1

The H \odot - 1 \odot

Table 1: Fitted lumped rate constants α and β , and CO and H₂O adsorption constants (K_{CO} and K_{H_2O}) for FTS on SiO₂-supported 7 nm Ru clusters (463 K).

[mol s¹ mol

 4.72 ± 1.1

 $Ru^{-1}MPa^{-3}$]

ß

α

Ref. [10a] also

on 7 nm Ru This work [mol s⁻¹ mol

 $Ru^{-1}MPa^{-2}$]

 0.58 ± 0.08

 $\textbf{0.66} \pm \textbf{0.11}$

The H₂O enhancement factor (χ):

$$\chi = \frac{\beta(\mathrm{H}_{2}\mathrm{O})}{\alpha} = \exp\left(\frac{-\Delta(\Delta G_{\mathrm{eff}})}{RT}\right)$$
(10)

is defined as the ratio of the two numerator terms from Equation (6). The fitted values of α and β (Table 1) gives a χ of 7 ± 3 at 1 bar H₂O and 463 K, which corresponds to a difference in free energy barriers ($\Delta(\Delta G_{\text{eff}})$) between H₂O-mediated and anhydrous routes of -8 ± 2 kJ mol⁻¹.

 H_2O may influence formyl routes 1) as a H-source (H_2O^* reaction with HCO* to form *HCOH* and OH*), 2) as a "solvent" to stabilize the TS for H-addition at the O-atom in HCO* (through H-bonding with incipient O–H bonds), or 3) as a H-shuttling agent (as a H_2O molecule or extended phase) for H* transfer to the O-atom in HCO*, as shown in Scheme 2.

Figure 4 shows DFT-derived energies for H_2O -mediated hydroxymethylidyne route, for which the effective barriers are:

Figure 3. Measured and predicted CO consumption turnover rates (predictions from Equation (9) and parameters in Table 1.)

Scheme 2. H_2O -mediated *HCOH* formation via formyl or hydroxymethylidyne intermediates. Quasi-equilibrated steps are denoted by reaction arrows overlaid with a circle.

Angew. Chem. Int. Ed. 20, 39, 12273-12278

Angewandte Communications

Figure 4. DFT-derived reactant, TS, and product structures in *HCOH* formation of the formyl route a) direct H*-addition, b) H_2O as a H-source, c) H_2O as a solvent, and d) H_2O as a H-shuttle (the transferred H-atom is highlighted and distances are in nm).

$$\Delta H_{\rm eff} = H_{\rm TS_i^{**}} - \left(H_{\rm CO^*} - H_{\rm CO(g)}\right) - H_{\rm CO^*} - \frac{n}{2}H_{\rm H_2(g)} - H_{\rm H_2O(g)}$$
(11)

These barriers include, in contrast with those for the anhydrous case [Eq. (5)], energies for the H₂O-containing transition state and its H₂O(g) precursor (Scheme 2, Steps 3e/ f). H₂O as a H-source, solvent, or H-shuttle can increase (by 52 kJmol^{-1}), have no effect, or slightly decrease (by 12 kJmol^{-1}), respectively, the effective barriers in the

formyl route that prevails in the absence of H_2O (Figure 4). Concomitant entropy losses upon H_2O fixation, however, make activation free energies larger than for anhydrous routes, even for H-shutting. We conclude that these H_2O mediated routes do not account for the measured rate enhancements.

Hydroxymethylidyne routes are disfavored in the absence of water, but may become the preferred path through the influence of water. H₂Omediated H-shuttling leads to COH* formation activation energies [111 kJ mol⁻¹, Figure 5, Figure 6a, Eq. (11)] much smaller than for H* addition without H_2O [186 kJ mol⁻¹, Figure 2, Eq. (4)]. Hshuttling involves electron transfer from H* to Ru as H* interacts with H₂O to form H₃O^{δ +} species, which protonates CO* in a manner reminiscent of proton coupled electron transfer steps in aqueous media^[14] and in H₂O-aided H-diffusion.^[15] Bader charges^[16] indicate that δ is +0.87. *HCOH* dissociation barriers (129 kJ mol⁻¹) are larger than for COH* dissociation (111 kJ mol⁻¹), consistent with quasi-equilibrated COH* formation through H₂O-assisted H-shuttling [Eq. (S26), SI]. The effective barrier for H₂O-mediated hydroxymethylidyne routes (129 kJ mol⁻¹) is much smaller than for H₂Omediated formyl routes (181 kJ mol⁻¹), indicating that H₂O mediation opens a C-O activation route absent at low H₂O concentrations. In this route, the kinetically-relevant activation of C-O bonds in

HCOH (to form CH* and OH*) proceeds though a TS that involves two H atoms and a CO-derived species, which is consistent with reported FTS rate equations on Co and Ru catalysts^[2,3,5,7,10,11] [Eq. (1)].

Rearranging Equation (10) with the α and β values for the full FTS rate equation [Eq. (6)] gives:

$$\alpha = K_{\rm CO} K_{\rm H_2} K_{3a} K_{4a} k_{5a} \tag{12}$$

Figure 5. Reaction coordinate diagrams for H_2O -mediated formyl and hydroxymethylidyne routes in the presence of H_2O . Intrinsic activation barriers are in italics and effective barriers (with respect to CO*-covered Ru_{201} particles; [Eq. (11)]) are in bold.

12276 www.angewandte.org

© 20, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 6. DFT-derived reactant, TS and product structures for the H₂O-mediated hydroxymethylidyne route (the transferred H-atom is highlighted and distances are in nm).

$$\beta = K_{\rm CO} K_{\rm H_2} K_{\rm 3f} K_{\rm 4f} K_{\rm 5f} k_{\rm 6f} \tag{13}$$

$$\chi = \frac{K_{3f}K_{4f}K_{5f}k_{6f}(\mathrm{H_2O})}{K_{3a}K_{4a}K_{5a}} = \exp\left(\frac{-\Delta(\Delta G_{\mathrm{eff}})}{RT}\right)$$
(14)

The measured free energy difference between the anhydrous and H₂O-mediated terms in Equation 10 ($\Delta(\Delta G_{\text{eff}}) = -8 \pm 2 \text{ kJmol}^{-1}$) is related to their respective differences in enthalpy ($\Delta(\Delta H_{\text{eff}})$) and entropy ($\Delta(\Delta S_{\text{eff}})$):

$$\Delta(\Delta G_{\rm eff}) = \Delta(\Delta H_{\rm eff}) - T(\Delta(\Delta S_{\rm eff}))$$
(15)

The $\Delta(\Delta H_{\rm eff})$ between the H₂O-mediated hydroxymethylidyne route ($\Delta H_{\rm eff}$ =129 kJ mol⁻¹, Figure 4) and the anhydrous formyl route ($\Delta H_{\rm eff}$ =193 kJ mol⁻¹, Figure 2) is -64 kJ mol⁻¹, and is related to the difference in enthalpy of the H₂O-mediated kinetically-relevant transition state ($H_{\rm H_2O-med.}^{+}$) and the anhydrous kinetically relevant transition state ($H_{\rm Anh.}^{+}$) and gas-phase water.

$$\Delta(\Delta H_{\rm eff}) = H^{\pm}_{\rm H_2O-med.} - H^{\pm}_{\rm Anh.} - H_{\rm H_2O(g)}$$
(16)

The value of $\Delta(\Delta S_{\rm eff})$ reflects the entropy loss caused by the "fixation" of a H₂O molecule at the hydroxymethylene TS. Assuming that the vibrational entropy of the two transition states are similar, the majority of this loss can be estimated as the ΔS upon H₂O physisorption which has been estimated from adsorption isotherms [Eq. (S27)–(S30)] as $134 \pm 10 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}$.^[17]

$$\Delta(\Delta S_{\rm eff}) = S_{\rm H_2O-med.}^{\dagger} - S_{\rm Anh.}^{\dagger} - S_{\rm H_2O(g)} \approx S_{\rm H_2O,Phys.}$$
(17)

Substituting $\Delta(\Delta H_{\text{eff}})$ and $\Delta(\Delta S_{\text{eff}})$ values into Equation (15) gives a $\Delta(\Delta G_{\text{eff}})$ estimate of -2 ± 5 kJ mol⁻¹ at 463 K and 1 bar, which lie within the uncertainty range of the measured enhancement factor (-8 ± 2 kJ mol⁻¹).

products (Figure 1 and Ref. [2,4]), indicating that it promotes chain growth without commensurate effects on chain termination. The precise nature of chain growth pathways and the monomers involved remains controversial, a subject that we address in a later study.^[2,3] We illustrate here two plausible effects of H₂O on chain growth, based on the experimental and theoretical evidence presented above for H₂O mediation of H-assisted C–O bond cleavage. C–C bonds may form by alkyl chain reactions

H₂O also increases the chain length of FTS

with "activated" C_1 species [Eq. (18)] or by sequential reactions of such alkyls with CO* and H* to form hydroxyalkylidenes that dissociate to form alkylidynes and OH* [Eq. (19)]. CO* may also react with alkylidynes and alkylidenes,^[18] which hydrogenate to form hydroxyalkylidenes; our simulations^[19] show, however, that CH* and CH₂* hydrogenation barriers are much smaller than for their reactions with CO*, indicating that they would convert to alkyls before further chain growth. Termination occurs either by β -H elimination to form terminal alkenes [Eq. (20)] or H*-addition to form *n*-alkanes [Eq. (21)].^[3]

$$C_n H_{2n+1}^* + C H_x^* \to C_{n+1} H_{2n+1+x}^* + *$$
 (18)

$$C_n H_{2n+1}^* + CO^* + H^* \to {}^*C_n H_{2n+1} COH^* + {}^* \to C_n H_{2n+1} C^* + OH^* + {}^*$$
(19)

$$C_n H_{2n+1}^* + * \to C_n H_{2n}^* + H^*$$
 (20)

$$C_n H_{2n+1}^* + H^* \to C_n H_{2n+2}^* + *$$
 (21)

 H_2O increases the rate of formation of activated C_1 species and, in doing so, the steady-state CH_x^* coverages and the chain growth rate [through Eq. (18)], without concomitant effects on termination rates.^[20] C–C bond formations by reactions in which CO* reacts with an alkyl chain and H* [Eq. (19)] are analogous to CO* activation in which CO* reacts with two H* as the chemical nature of an alkyl species is similar to that of H* indicating that H_2O would decrease activation barriers for chain growth via Equation (19) by similar H-shuttling mediation, leading to heavier products and higher C_{5+} selectivities, as found experimentally.

We conclude that H₂O, whether indigenous or co-fed, increases CO activation rates on Ru-based catalysts in a manner consistent with the involvement of H₂O-mediated H-transfer routes and competitive adsorption of H₂O-derived intermediates [Eq. (9)]. DFT-derived reaction and activation energies indicate that H₂O mediates the kinetically-relevant H-transfer required for O–H bond formation in pathways involving *HCOH* intermediates and increases chain growth probabilities by increasing the rate of monomer formation when growth occurs via CH_x* or the rate constant for chain growth when CO* is the monomer. H₂O can act as a cocatalyst in FTS reactions in doing so, as previously observed in metal-catalyzed hydrogenations in protic media.^[14,15] The kinetic resemblance among Ru and Co catalysts^[2,3,5,6,10] suggest that similar conclusions about H₂O-mediated routes

apply to FTS catalysis on Co, on which FTS rates and product chain length also increase with increasing H_2O pressure.^[2,4,5]

Experimental Section

A 5 wt % Ru/SiO₂ catalyst was prepared as reported elsewhere.^[10,21] The Ru particle size was found to be 7 nm^[10] and the SiO₂ support (PQ Corp. CS-2133, $350 \text{ m}^2\text{g}^{-1}$) has an average pore diameter of 13 nm.^[5] FTS rates and selectivities were measured in an isothermal $(\pm 2 \text{ K})$ fixed bed stainless steel reactor (I.D. = 1 cm) with a catalyst bed (15 cm) consisting of 5 wt % Ru/SiO2 (0.9 g) catalyst and SiO2 diluent (3.5 g). The catalyst and diluent mixture was heated to 673 K at 2 Kmin^{-1} in flowing H₂ and holding for 10 h at ambient pressures prior to exposure of the catalyst to reactants. Reported rates and selectivities, determined via analysis of the reaction effluent by online gas chromatography as reported elsewhere,^[10] correspond to steadystate values obtained after 24 h on-stream. DFT calculations were performed as previously reported^[10] on a 201-atom Ru nanoparticle at a CO* coverage of 1.55 ML using the VASP software package with ultra-soft pseudopotentials and the Perdew-Wang 91 form of the generalized gradient approximation.[22]

Received: May 28, 2013 Revised: August 5, 2013 Published online: October 2, 2013

Keywords: density functional calculations · Fischer– Tropsch synthesis · heterogeneous catalysis · hydrogenation · kinetics

- [1] F. Fischer, H. Tropsch, Brennst.-Chem. 1926, 7, 97.
- [2] E. Iglesia, Appl. Catal. A 1997, 161, 59.
- [3] a) M. Vannice, *Catal. Rev. Sci. Eng.* 1976, *14*, 153; b) E. Iglesia, S. Reyes, R. Madon, S. Soled, *Adv. Catal.* 1993, *39*, 221; c) M. Ojeda, R. Nabar, A. Nilekar, A. Ishikawa, M. Mavrikakis, E. Iglesia, *J. Catal.* 2010, *272*, 287.
- [4] a) H. Schulz, E. vein Steen, M. Claeys, *Stud. Surf. Sci. Catal.* **1994**, *81*, 455; b) H. Schulz, M. Claeys, S. Harms, *Stud. Surf. Sci. Catal.* **1997**, *107*, 193; c) C. Kim (Exxon), US 0355218, **1990**;
 d) C. Kim (Exxon), US 5227407, **1993**; e) J. Li, G. Jacobs, T. Das, Y. Zhang, B. Davis, *Appl. Catal. A* **2002**, *236*, 67.
- [5] S. Krishnamoorthy, M. Tu, M. Ojeda, D. Pinna, E. Iglesia, J. Catal. 2002, 211, 422.
- [6] a) F. Gottschalk, R. Copperthfvaite, M. van der Riet, G. Hutchings, *Appl. Catal.* 1988, 38, 103; b) P. van Berge, J. van de Loosdrecht, S. Barradas, A. van der Kraan, *Catal. Today* 2000, 58, 321; c) D. Schanke, A. Hilmen, E. Bergene, K. Kinnari, E. Rytter, E. Adnanes, A. Holmen, *Catal. Lett.* 1995, 34, 269; d) A. Hilmen, D. Schanke, K. Hanssen, A. Holmen, *Appl. Catal. A* 1999, 186, 169.

- [7] a) I. Yates, C. Satterfield, *Energy Fuels* 1991, 5, 168–173; b) B. Jager, R. Espinoza, *Catal. Today* 1995, 23, 17.
- [8] C. Xiao, Z. Cai, T. Wang, Y. Kou, N. Yan, Angew. Chem. 2008, 120, 758; Angew. Chem. Int. Ed. 2008, 47, 746.
- [9] A. Dalai, T. Das, K. Chaudhari, G. Jacobs, B. Davis, *Appl. Catal.* A 2005, 289, 135.
- [10] a) B. Loveless, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc. 2013, 135, 6107; b) B. Loveless, E. Iglesia, J. Catal. 2013, submitted.
- [11] M. Ojeda, A. Li, R. Nabar, M. Mavrikakis, E. Iglesia, J. Phys. Chem. C 2010, 114, 19761.
- [12] a) S. Shetty, A. Jansen, R. van Santen, J. Am. Chem. Soc. 2009, 131, 12874; b) O. Inderwildi, S. Jenkins, D. King, J. Phys. Chem. C 2008, 112, 1305; c) M. Zhuo, K. Tan, A. Borgna, M. Saeys, J. Phys. Chem. C 2009, 113, 8357; d) M. Elahifard, M. Jigato, J. Niemantsverdriet, ChemPhysChem 2012, 13, 89; e) M. Andersson, T. Bliggard, A. Kustov, K. Larsen, J. Greeley, T. Johannessen, C. Christensen, J. Nørskov, J. Catal. 2006, 239, 501.
- [13] a) J. den Breejen, P. Radstake, G. Bezemer, J. Bitter, V. Frøseth, A. Holmen, K. de Jong, *J. Am. Chem. Soc.* **2009**, *131*, 7197; b) J. den Breejen, J. Sietsma, H. Freidrich, J. Bitter, K. de Jong, *J. Catal.* **2010**, *270*, 146.
- [14] a) D. Cao, G. Lu, A. Wieckowski, S. Wasileski, M. Neurock, J. Phys. Chem. B 2005, 109, 11622; b) S. Desai, M. Neurock, Electrochim. Acta 2003, 48, 3759; c) S. Desai, V. Pallassana, M. Neurock, J. Phys. Chem. B 2001, 105, 9171; d) M. Janik, C. Taylor, M. Neurock, J. Electrochem. Soc. 2009, 156, B126; e) M. Ide, B. Hao, M. Neurock, R. Davis, ACS Catal. 2012, 2, 671; f) Y. Zhao, Y. Yang, C. Mims, C. Peden, J. Li, D. Mei, J. Catal. 2011, 281, 199; g) C. Michel, F. Auneau, F. Delbecq, P. Sautet, ACS Catal. 2011, 1, 1430.
- [15] a) M. Janik, R. Davis, M. Neurock, J. Am. Chem. Soc. 2005, 127, 5238; b) M. Janik, B. Bardin, R. Davis, M. Neurock, J. Phys. Chem. C 2006, 110, 4170; c) L. Merte, G. Peng, R. Bechstein, F. Rieboldt, C. Farberow, L. Grabow, W. Kudernatsch, S. Wendt, E. Laegsgaard, M. Mavrikakis, F. Besenbacher, Science 2012, 336, 889.
- [16] G. Henkelman, A. Arnaldsson, J. Jónsson, *Comput. Mater. Sci.* 2006, 36, 354.
- [17] M. Nagao, J. Phys. Chem. 1971, 75, 3822.
- [18] a) O. Inderwildi, D. King, S. Jenkins, *Phys. Chem. Chem. Phys.* 2009, *11*, 11110; b) M. Zhuo, A. Borgna, M. Saeys, *J. Catal.* 2013, 297, 217.
- [19] C. Buda, T. Lawlor, D. Hibbitts, M. Neurock, unpublished results.
- [20] C. Bertole, C. Mims, G. Kiss, J. Catal. 2002, 210, 84.
- [21] S. Soled, A. Malek, S. Miseo, J. Baumgartner, C. Kliewer, M. Afeworki, P. Stevens, *Stud. Surf. Sci. Catal.* 2006, 162, 103.
- [22] a) G. Kresse, J. Hafner, *Phys. Rev. B* 1993, 47, 558; b) D. Vanderbilt, *Phys. Rev. B* 1985, 32, 8412; c) J. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Pederson, D. Singh, C. Fiolhais, *Phys. Rev. B* 1992, 46, 6671.